

MAIS DE 35 ANOS A CONVERTER CONHECIMENTO EM VALOR Internal Use

Since 1986

Ferramenta Avançada de Autodiagnóstico e Eficiência Energética para Indústrias

Lucas Marcon

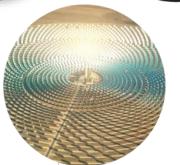
INSTALAÇÕES

Instalações - Porto

MAIS DE 35 ANOS A CONVERTER CONHECIMENTO EM VALOR

SETORES

AUTOMÓVEL E TRANSPORTES



ENERGIAS RENOVÁVEIS

ECONOMIA DO MAR

SAÚDE E DESPORTO

Contexto

A UE chegou a um acordo provisório para reduzir em 11,7% o consumo de energia até 2030, que deverá ainda ser aprovado pelo Parlamento Europeu e os Estados-membros.

,

Os 27 terão de atingir **novas metas de 1,9%** de poupança no consumo final de energia, até final de 2030, **face aos atuais 0,8%**.

Pacto Ecológico Europeu: regras mais rigorosas para aumentar eficiência energética

Contexto

Portugal cumpriu metas da UE sobre eficiência energética e renováveis, mas é preciso "gerir melhor" a água e os resíduos

O país tem uma economia menos intensiva em energia do que muitos outros países da OCDE e reduziu "significativamente" as suas emissões de gases com efeito de estufa e melhorou a sua qualidade do ar.

OECD Environmental Performance Reviews

PORTUGAL 2023

Plano de Recuperação e Resiliência C11 - Descarbonização da Indústria

Aviso nº 02:

- a) 200 milhões de euros afetos preferencialmente a PME;
- b) 200 milhões de euros cuja aplicação está dependente da superação em 20% da meta desta medida, nomeadamente, a implementação de, pelo menos, 300 projetos

Aviso nº 03:

- 150 milhões de euros para as candidaturas da modalidade A (200 mil euros por empresa)
- 100 milhões de euros para as candidaturas da modalidade B.

Plano de Recuperação e Resiliência C14 – Hidrogénio e Renováveis

INVESTIMENTO TC-C14-i01

AVISO DE ABERTURA DE CONCURSO

AAC N.º 02/C14-i01/2023

APOIO À PRODUÇÃO DE HIDROGÉNIO RENOVÁVEL E OUTROS GASES RENOVÁVEIS

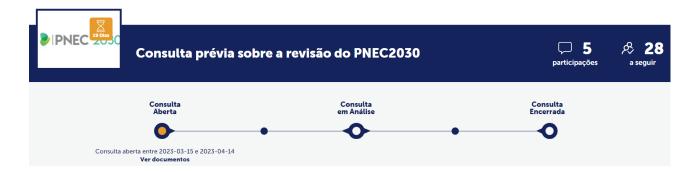
Aviso nº 01:

- € 102 000 000,00 (centro e dois milhões de euros),
- 25 projetos aprovados

Aviso nº 02:

- € 83 000 000,00 (oitenta e três milhões de euros),
- € 15 000 000,00 (quinze milhões de euros), por beneficiário
- Submissão até o dia 31 de julho de 2023.

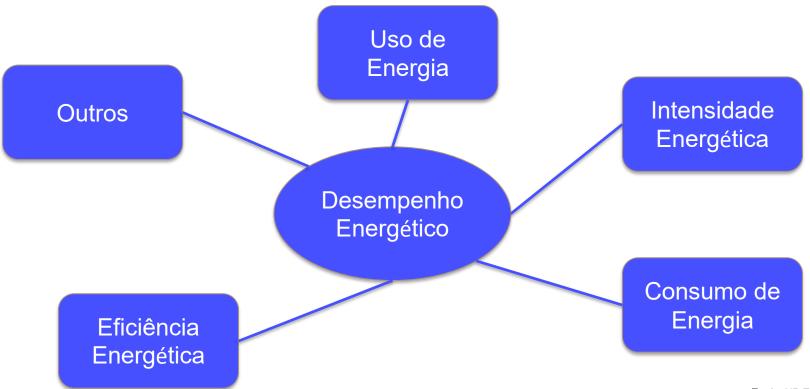
16 de marco de 2023



Revisão PNEC

O PNEC 2030 que estabelece as metas, objetivos, linhas de atuação e medidas de ação em matéria de energia e clima, devidamente relacionados com as 5 dimensões da União de Energia, a saber: Descarbonização; Eficiência Energética; Mercado Interno de Energia; Segurança Energética; e Investigação, Inovação e Competitividade.

Plano Nacional Energia e Clima 2030 (PNEC 2030) - 2020


Revisão PNEC

PROMOVER A DESCARBONIZAÇÃO DA ECONOMIA E A TRANSIÇÃO ENERGÉTICA VISANDO A NEUTRALIDADE CARBÓNICA EM 2050, ENQUANTO OPORTUNIDADE PARA O PAÍS, ASSENTE NUM MODELO DEMOCRÁTICO E JUSTO DE COESÃO TERRITORIAL QUE POTENCIE A GERAÇÃO DE RIQUEZA E USO EFICIENTE DE RECURSOS.

			\Leftrightarrow	
EMISSÕES GEE	EFICIÊNCIA ENERGÉTICA	RENOVÁVEIS	RENOVÁVEIS NOS TRANSPORTES	INTERLIGAÇÕES ELÉTRICAS
-45% -55%	35%	47 %	20%	15%

Sistemas avançados de gestão energética

Sistemas de gestão de energia e sistemas de controlo avançado

- Presentes em diferentes níveis de desenvolvimento em todos os setores industriais
 - Redução custos de manutenção;
 - Menor tempo de paragens;
 - Maior eficiência energética;
 - Redução de emissões e de efluentes

Técnica **M&T** (Monitoring and Targeting) - **5 - 15 %.**

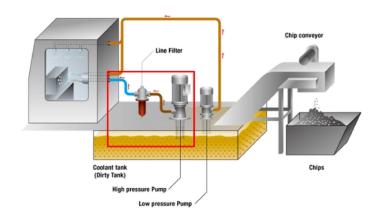
Controlo do Processo (temp., pressão, humidade, caudais) poupanças de 2 – 18 %

- A Monitorização dos consumos de energia e das produções deverá ser contínua
- O bom funcionamento de um sistema de controlo depende da informação obtida em vários pontos do processo (sensorização múltipla)
- Necessidade de sensibilizar os colaboradores quanto aos consumos energéticos
 - Aumentar a taxa de sucesso das medidas;
 - Fornecer fiabilidade ao processo;

ISO 50001: Certificação de Sistemas de Gestão de Energia

- Requisitos de um Sistema de Gestão de Energia;
- Capacitar a organização a estabelecer sistemas e processos para melhoria do desempenho energético, entendido como **resultados mensuráveis** relacionados à eficiência energética e ao uso e consumo de energia;
- Promover de forma contínua uma melhoria do desempenho energético das organizações através da conceção e implementação de um sistema de gestão energético por parte das organizações;
- Avaliar sistematicamente, objetivamente e periodicamente o desempenho desses mesmos Internation of Banization sistemas;
- Promover um uso mais eficiente das fontes de energia disponíveis;
- Reduzir os custos de energia;
- Reduzir as emissões de gases com efeito de estufa.

Sistemas avançados de gestão energética



Deteção de falhas:

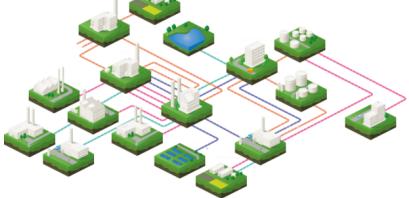
- Análise de consumos energéticos em tempo real ajuda a prever a performance dos equipamentos. ex: aumentos ou reduções bruscas no consumo energético pode significar a ocorrência de defeitos
- Análise de ocorrências de uma série de dados pode indicar a probabilidade de defeito ex: análise de consumos energéticos de um sistema de ar comprimido ao fim de semana

Manutenção preditiva:

- Deteção de defeitos antes que ocorreram
- Defeitos menores geralmente originam defeitos maiores ex: análise da perda de carga de um sistema de bombagem ajuda a prever quando os sistemas de filtração necessitam de ser substituídos



Sistemas avançados de gestão energética


Correlação:

- Integração de dados de produção, dados económicos e dados ambientais
- Auxílio na obtenção de KPIs relevantes (consumos específicos, pegada carbónica específica, custos específicos)
- Ferramenta importante para a análise de consumos em horas de cheia e de ponta

Sistemas avançados de gestão energética Simbiose Industrial

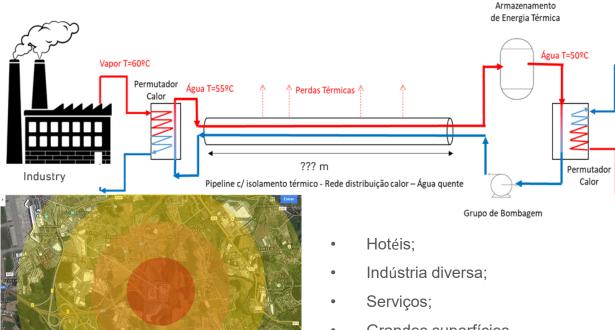
É fundamental desenvolver ferramentas, metodologias e sistemas para promoção da eco eficiência dos processos produtivos através da racionalização do consumo de energia térmica, da utilização de fontes de energia renovável para fornecimento direto de energia térmica a processos industriais, da recuperação de calor residual, armazenamento de energia térmica e otimização da gestão da energia.

Sistemas avançados de gestão energética

Simbiose Industrial

INEGI coordenador

Imagem propriedade da empresa Warmtebedrijf Rotterdam.


Months

Recetores Energia Térmica

Ar ou Água T=45ºC

Sistemas avançados de gestão energética

Simbiose Industrial

- Grandes superfícies.
- Estufas Agrícolas.

Sistemas avançados de gestão energética

Perspetivas Futuras

No contexto da descarbonização do setor industrial é fundamental desenvolver e aplicar ferramentas informáticas avançadas e inovadoras, data-driven, para gestão da integração de diferentes fontes e vetores de energia, renováveis e não renováveis.

As ferramentas avançadas de gestão de energia permitirão uma descentralização da tomada de decisão e a promoção da descarbonização da industria, através de:

- Previsão de recurso renovável e ligação ao planeamento industrial;
- Suporte à implementação de medidas de integração Energética (Metodologia Pinch), recuperação de calor residual e simbiose industrial;
- Monitorização em continuo de fluxos de energia térmica e de eficiência de processos térmicos e geradores de energia térmica;
- Monitorização em contínuo da Pegada Carbónica de processos e produtos;

Ação 1

SENSIBILIZAÇÃO

DOS

CONSUMIDORES

IDENTIFICAÇÃO DE **NECESSIDADES**

Ação 2

Ação 3

Ação 4

Ação 5

DIVULGAÇÃO E FORMAÇÃO

PLATAFORMA DIGITAL INTERATIVA

AVALIAÇÃO DE IMPACTOS

Ação 2

Ação 4

IDENTIFICAÇÃO DE NECESSIDADES

Inquéritos Setoriais

Diagnósticos Energéticos

Planos de Ação Setorial

PLATAFORMA DIGITAL INTERATIVA

Preparação da plataforma, organização e Publicação de Conteúdos

Elaboração de ferramenta de autodiagnóstico

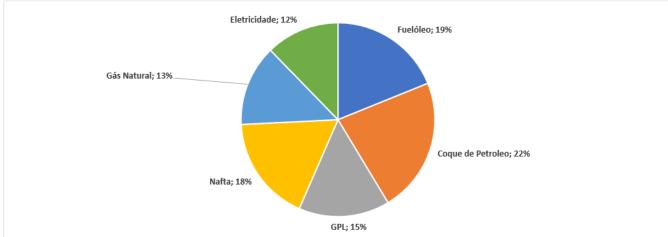
Ferramenta de Autodiagnóstico

Emissões Gasosas Calor CO₂

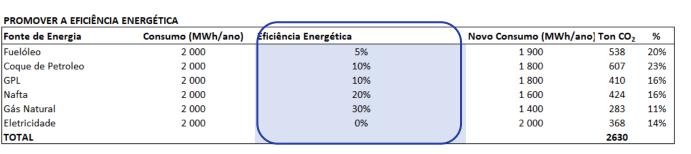
Calor Aproveitado

Gás Natural Energia (kWh) Fator CO₂

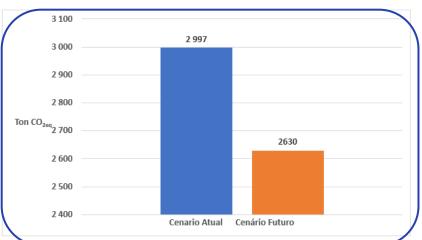
Rendimento (kWh_{útil})



CARACTERIZAÇÃO GERAL - EMISSÕES GASOSAS


	Fonte de Energia	Consumo (MWh/ano)	\	Ton CO ₂		%	Π
	Fuelóleo	2 000		565,92		19%	П
П	Coque de Petroleo	2 000		673,92		22%	Ш
П	GPL	2 000		455,04		15%	Ш
П	Nafta	2 000		529,92		18%	Ш
П	Gás Natural	2 000		404,64		13%	Ш
П	Eletricidade	2 000		368,00		12%	

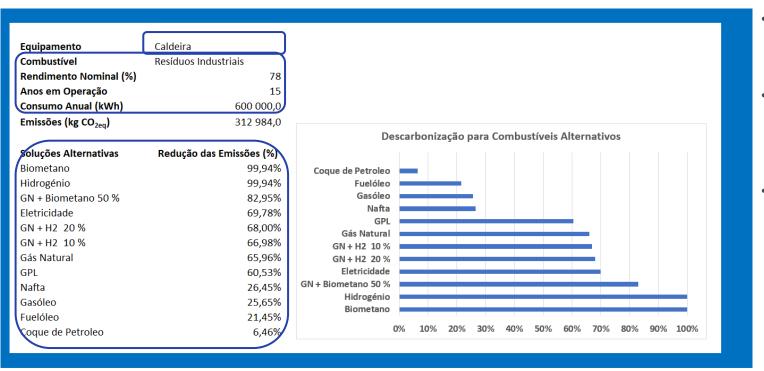
TOTAL 2 997,44



- Diferentes Fontes de Energia
- Consumo (Energia, Volume, Massa)
- Emissão de CO_{2eq} (Fatores de emissão ajustáveis); TEP
 - Representação Gráfica

Cenário	Ton CO ₂	
Hoje	2 997	
Futuro	2630	
	-367	
Descarbonização	-12%	
€/Ton CO ₂	100,00 €	
	-36 744,00	

- Estimar o impacto de ações de eficiência energética
- Comparação das emissões evitadas
- Quantificação e custo CO₂
- Representação Gráfica



Aspectos Economicos

Fonte de Energia	Consumo (MWh/ano)	€/MWh	Custo Anual €
Fuelóleo	2 000	75,00 €	150 000,00 €
Coque de Petroleo	2 000	40,00 €	80 000,00 €
GPL	2 000	47,00 €	94 000,00 €
Nafta	2 000	55,00 €	110 000,00 €
Gás Natural	2 000	40,00 €	80 000,00 €
Eletricidade	2 000	70,00 €	140 000,00 €
TOTAL			654 000,00 €

Fonte de Energia	Redução Cons.(MWh/ano)	€/MWh	Poupança Anual €
Fuelóleo	100	75,00 €	7 500,00 €
Coque de Petroleo	200	40,00 €	8 000,00 €
GPL	200	47,00 €	9 400,00 €
Nafta	400	55,00 €	22 000,00 €
Gás Natural	600	40,00 €	24 000,00 €
Eletricidade	0	70,00 €	0,00€
TOTAL	1 500 ′		70 900,00 €
			-11%

- Estar disponível para diferentes equipamentos
- Permitir comparar diferentes alternativas de maneira integrada
- Soluções indicativas

Medidas de Eficiência Energética (caldeiras)

Isolamento de tubagens e válvulas – 0,8 %

Sistema integrado de gestão dos consumos e dos custos da energia – 2 %

Substituição de caldeiras – 5 %

Ações de formação e de sensibilização – 1 %

Afinação de queimadores – 0,5 %

Recuperação de calor – 4 %

Eficiência Energética para Indústria

Identificação de Fontes de Energia; Consumos e Emissões

Medidas de Eficiência Energética

Medidas Avançadas de Eficiência Energética

Medidas Disruptivas

Lucas Marcon

Imarcon@inegi.up.pt

INSTITUTO DE CIÊNCIA E INOVAÇÃO EM **ENGENHARIA MECÂNICA E ENGENHARIA INDUSTRIAL**

www.inegi.pt

